What Does Scalable Resilience Look Like

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu

Parallel Programming Laboratory
Department of Computer Science
University of Illinois at Urbana Champaign

Outline

- SDCs are all the rage, but:
- Failstop failures are not going away
- We need schemes to handle them both
 - "all bets are off" nathan (not true: we can combine both)
- RTS based solutions can isolate applications from having to deal with failures
 - Somehow, no talk covered this
- Overdecomposition based solutions contribute some unique solutions/enhancements
- Checkpoint/restart (charm++ has been supporting fault detection and automatic restart for 5+ years now)
 - Optimized by non-blocking protocols
 - Burst buffers?? We can do without for many apps.. Reuse the memory (make it multi-purpose)
 - Many apps have relatively small mem footprint at checkpoint
 - These can be combined with SDC detection schemes
- But the real fun is message-logging schemes

A couple of forks

Overdecomposition

- MPI + x
- "Task Models"
 - Asynchrony
- Overdecomposition:
 - Most adaptivity

Task Models

A Runtime System based on Over-decomposition and Migratability can support resilience effetively

Runtime Systems can play a role

- RTS based solutions to resilience are desirable
 - They insulate the application from failures
 - RTS has information about the machine status and application status
 - Applications can provide information to the RTS

Failstop Faults

- Silent Data Corruption is what everyone is talking about
 - It is important
 - But failstop faults are not going away
 - We need to handle them both

Progress Rate is the right metric

- Compared with
 - distributed systems theory, or
 - a mission to mars, or
 - real-time systems
- HPC needs are different
 - We will accept a small probability of failure
 - In that case, we will redo the simulation
 - But we care about application making progressin presence of faults

Power consumption is continuous

Normal Checkpoint-Resart method

Progress is slowed down with failures

Fault Tolerance in Charm++/AMPI

- Four approaches available:
 - Disk-based checkpoint/restart
 - In-local-storage double checkpoint w auto restart
 - Demonstrated on 64k cores
 - Proactive object migration
 - Message-logging: scalable fault tolerance
 - Can tolerate frequent faults
 - Parallel restart and potential for handling faults during recovery

In-memory checkpointing

- Actually: In local-storage double checkpoint, with automatic failure detection and restart
- Is practical for many apps
 - Relatively small footprint at checkpoint time
- Very fast times...
- Demonstration challenge:
 - Works fine for clusters
 - For MPI-based implementations running at centers:
 - Scheduler does not allow job to continue on failure
 - Communication layers not fault tolerant
 - Fault injection: dieNow(),
 - Spare processors

Checkpoint Time – Intrepid(leanMD)

Restart Time – Intrepid(leanMD)

Extensions to fault recovery

- Based on the same over-decomposition ideas
 - A surprisingly large number of applications have low memory footprint at checkpoint
 - But, if not:
 - Use NVRAM instead of DRAM for checkpoints
 - Non-blocking variants
 - [Cluster 2012] Xiang Ni et al.
 - Replica-based soft-and-hard-error handling
 - As a "gold-standard" to optimize against
 - [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

Scalable Fault tolerance

- Faults will be frequent at exascale (true??)
 - Failstop, and soft failures are both important
- Checkpoint-restart <u>may</u> not scale
 - Or will it?
 - Requires all nodes to roll back even when just one fails
 - Inefficient: computation and power
 - As MTBF goes lower, it becomes infeasible

Message-Logging

• Basic Idea:

- Only the processes/objects on the failed node go back to the checkpoint!
- Messages are stored by senders during execution
- Periodic checkpoints still maintained
- After a crash, reprocess "resent" messages to regain state
- Does it help at exascale?
 - Not really, or only a bit: Same time for recovery!
- But with over-decomposition,
 - work in one processor is divided across multiple virtual processors; thus, <u>restart can be parallelized</u>
 - Virtualization helps fault-free case as well

Power consumption is lower during recovery

Message logging + Object-based virtualization

Progress is faster with failures

Fail-stop recovery with message logging: A research vision

Cylinder surface: nodes of the machine

- It regresses..
- Its objects start re-execution,
 - IN PARALLEL on neighboring nodes!

- Re-execution continues even as other nodes continue forward
- Due to "parallel re-execution" the neighborhood catches up

• Back to normal execution

• Another fault

- Even as its neighborhood is helping recover,
- A 3rd fault hits
- Concurrent recovery is possible as long as the two failed nodes are not checkpoint buddies

Takeaway

- Adaptive Runtime System is a good layer to implement resilience strategies
 - Especially with over-decomposition
- In-local-memory double checkpoint with automatic restart works well
- If we need to tolerate more frequent failures
 - Message logging with parallel restart and handling of most concurrent failures will do the job
- Need to combine with SDC handling

